Weighted Fuzzy Clustering for Online Detection of Application DDoS Attacks in Encrypted Network Traffic

Image of a publication paper

Distributed denial-of-service (DDoS) attacks are one of the most serious threats to today’s high-speed networks. These attacks can quickly incapacitate a targeted business, costing victims millions of dollars in lost revenue and productivity. In this paper, we present a novel method which allows us to timely detect application-layer DDoS attacks that utilize encrypted protocols by applying an anomaly-based approach to statistics extracted from network packets. The method involves construction of a model of normal user behavior with the help of weighted fuzzy clustering. The construction algorithm is self-adaptive and allows one to update the model every time when a new portion of network traffic data is available for the analysis. The proposed technique is tested with realistic end user network traffic generated in the RGCE Cyber Range.

Authors

Zolotukhin Mikhail, Kokkonen Tero, Hämäläinen Timo, Siltanen Jarmo

Cite as

Zolotukhin M., Kokkonen T., Hämäläinen T., Siltanen J. (2016) Weighted Fuzzy Clustering for Online Detection of Application DDoS Attacks in Encrypted Network Traffic. In: Galinina O., Balandin S., Koucheryavy Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART 2016, NEW2AN 2016. Lecture Notes in Computer Science, vol 9870. Springer, Cham

DOI

https://doi.org/10.1007/978-3-319-46301-8_27

Slide

Adding resilience to digital business

Slide

JYVSECTEC – Jyväskylä Security Technology is an independent research, development, and training center in Finland. We operate as part of Jamk University of Applied Science's Institute of Information Technology.

LinkedIn logo
YouTube logo
GitHub logo

Jamk University of Applied Sciences, Institute of Information Technology
Piippukatu 2, 40100 Jyväskylä, Finland
jyvsectec@jamk.fi

JYVSECTEC – Jyväskylä Security Technology © 2025 Finland.